Kaktus melakukan fotosintesis pada organ



Kaktus melakukan fotosintesis pada organ

Photosynthesis, is a food-making process that occurs in green plants. Photosynthesis is the chief function of leaves. The word photosynthesis means putting together with light. Green plants use energy from light to combine carbon dioxide and water to make food. All our food comes from this important energy-converting activity of green plants. Light energy is converted to chemical energy and is stored in the food that is made by green plants. Animals eat the plants, and we eat animal products as well as plants. The light used in photosynthesis is absorbed by a green pigment called chlorophyll. Each food-making cell in a plant leaf contains chlorophyll in small bodies called chloroplasts. In chloroplasts, light energy causes water drawn from the soil to split into molecules of hydrogen and oxygen. In a series of complicated steps, the hydrogen combines with carbon dioxide from the air, forming a simple sugar. Oxygen from the water molecules is given off in the process. From sugar--together with nitrogen, sulfur, and phosphorus from the soil--green plants can make starch, fat, protein, vitamins, and other complex compounds essential for life. Photosynthesis provides the chemical energy needed to produce these compounds. Certain bacteria and algae can also capture light energy and use it to make food. For example, photosynthetic bacteria contain chlorophyll in tiny bodies called chromatophores. In chromatophores, compounds other than water are combined with carbon dioxide to form sugar. No oxygen is released. Green plants convert carbon dioxide and water into food and oxygen. Plants and animals, in turn, "burn" the food by combining it with oxygen to release energy for growth and other activities of life. This process, which is called respiration, is the reverse of photosynthesis. Oxygen is used up and carbon dioxide and water are given off. Plants then use the carbon dioxide and water to produce more food and oxygen. The cycle of photosynthesis and respiration maintains the earth's natural balance of carbon dioxide and oxygen.

FOTOSINTESIS

photosynthesis

Fotosintesis atau fotosintesa merupakan proses pembuatan makanan yang terjadi pada tumbuhan hijau dengan bantuan sinar matahari dan enzim-enzim. Fotosintesis adalah suatu proses biokimia yang dilakukan tumbuhan, alga, dan beberapa jenis bakteri untuk memproduksi energi terpakai (nutrisi) dengan memanfaatkan energi cahaya.
fotosintesis adalah fungsi utama dari daun. Proses fotosintesis sangat penting bagi kehidupan di bumi karena hampir semua makhluk hidup tergantung pada proses ini. Proses Fotosintesis juga berjasa menghasilkan sebagian besar oksigen yang terdapat di atmosfer bumi. Organisme yang menghasilkan energi melalui fotosintesis (photos berarti cahaya) disebut sebagai fototrof. Fotosintesis merupakan salah satu cara asimilasi karbon karena dalam fotosintesis karbon bebas dari CO2 diikat (difiksasi) menjadi gula sebagai molekul penyimpan energi. Cara lain yang ditempuh organisme untuk mengasimilasi karbon adalah melalui kemosintesis, yang dilakukan oleh sejumlah bakteri belerang.

daun hijau fotosintesis


Fotosintesis pada tumbuhan
Tumbuhan hijau daun bersifat autotrof. Autotrof artinya dapat memasak atau mensintesis makanan langsung dari senyawa anorganik. Tumbuhan menyerap karbondioksida dan air untuk menghasilkan gula dan oksigen yang diperlukan sebagai makanannya. Energi untuk menjalankan proses ini berasal dari fotosintesis. Perhatikan persamaan reaksi yang menghasilkan glukosa berikut ini:

6H2O + 6CO2 + cahaya → C6H12O6 (glukosa) + 6O2

Glukosa dapat digunakan untuk membentuk senyawa organik lain seperti selulosa dan dapat pula digunakan sebagai bahan bakar. Proses ini berlangsung melalui respirasi seluler yang terjadi baik pada hewan maupun tumbuhan. Secara umum reaksi yang terjadi pada respirasiseluler adalah kebalikan dengan persamaan di atas. Pada respirasi, gula (glukosa) dan senyawa lain akan bereaksi dengan oksigen untuk menghasilkan karbondioksida, air, dan energi kimia.

Fotosintesis Fotosintesa Photosintesis

Tumbuhan menyerap cahaya karena mempunyai pigmen yang disebut klorofil. Pigmen inilah yang memberi warna hijau pada tumbuhan. Klorofil terdapat dalam organel yang disebut kloroplast. klorofil menyerap cahaya yang akan digunakan dalam fotosintesis. Sebagian besar energi fotosintesis dihasilkan di daun tetapi juga dapat terjadi pada organ tumbuhan yang berwarna hijau. Di dalam daun terdapat lapisan sel yang disebut mesofil yang mengandung setengah juta kloroplas setiap milimeter perseginya. Cahaya akan melewati lapisan epidermis tanpa warna dan yang transparan, menuju mesofil, tempat terjadinya sebagian besar proses fotosintesis. Permukaan daun biasanya dilapisi oleh kutikula dari lilin yang bersifat anti air untuk mencegah terjadinya penyerapan sinar matahari ataupun penguapan air yang berlebihan.

fotosintesadaun fotosintesis

 

Reaksi- Reaksi pada proses fotosintesis
Proses fotosintesis masih terus diselidiki karena masih ada sejumlah tahap yang belum bisa dijelaskan, meskipun sudah sangat banyak yang diketahui tentang proses vital ini. Proses fotosintesis sangat kompleks karena melibatkan semua cabang ilmu pengetahuan alam utama, seperti fisika, kimia, maupun biologi sendiri. Pada tumbuhan, organ utama tempat berlangsungnya fotosintesis adalah daun. Namun secara umum, semua sel yang memiliki kloroplast berpotensi untuk melangsungkan reaksi ini. Di organel inilah tempat berlangsungnya fotosintesis, tepatnya pada bagian stroma. Hasil fotosintesis (disebut fotosintat) biasanya dikirim ke jaringan-jaringan terdekat terlebih dahulu. Pada dasarnya, rangkaian reaksi fotosintesis dapat dibagi menjadi dua bagian utama: reaksi terang (karena memerlukan cahaya) dan reaksi gelap (tidak memerlukan cahaya tetapi memerlukan karbon dioksida).
Reaksi terang
Reaksi terang adalah proses untuk menghasilkan ATP dan reduksi NADPH2. Reaksi ini memerlukan molekul air. Proses diawali dengan penangkapan foton oleh pigmen sebagai antena. Pigmen klorofil menyerap lebih banyak cahaya terlihat pada warna biru (400-450 nanometer) dan merah (650-700 nanometer) dibandingkan hijau (500-600 nanometer). Cahaya hijau ini akan dipantulkan dan ditangkap oleh mata kita sehingga menimbulkan sensasi bahwa daun berwarna hijau. Fotosintesis akan menghasilkan lebih banyak energi pada gelombang cahaya dengan panjang tertentu. Hal ini karena panjang gelombang yang pendek menyimpan lebih banyak energi. Di dalam daun, cahaya akan diserap oleh molekul klorofil untuk dikumpulkan pada pusat-pusat reaksi. Tumbuhan memiliki dua jenis pigmen yang berfungsi aktif sebagai pusat reaksi atau fotosistem yaitu fotosistem II dan fotosistem I. Fotosistem II terdiri dari molekul klorofil yang menyerap cahaya dengan panjang gelombang 680 nanometer, sedangkan fotosistem I 700 nanometer. Kedua fotosistem ini akan bekerja secara simultan dalam fotosintesis, seperti dua baterai dalam senter yang bekerja saling memperkuat.
Fotosintesis dimulai ketika cahaya mengionisasi molekul klorofil pada fotosistem II, membuatnya melepaskan elektron yang akan ditransfer sepanjang rantai transpor elektron. Energi dari elektron ini digunakan untuk fotofosforilasi yang menghasilkan ATP, satuan pertukaran energi dalam sel. Reaksi ini menyebabkan fotosistem II mengalami defisit atau kekurangan elektron yang harus segera diganti. Pada tumbuhan dan alga, kekurangan elektron ini dipenuhi oleh elektron dari hasil ionisasi air yang terjadi bersamaan dengan ionisasi klorofil. Hasil ionisasi air ini adalah elektron dan oksigen. Oksigen dari proses fotosintesis hanya dihasilkan dari air, bukan dari karbon dioksida. Pendapat ini pertama kali diungkapkan oleh C.B. van Neil yang mempelajari bakteri fotosintetik pada tahun 1930-an. Bakteri fotosintetik, selain sianobakteri, menggunakan tidak menghasilkan oksigen karena menggunakan ionisasi sulfida atau hidrogen.
Pada saat yang sama dengan ionisasi fotosistem II, cahaya juga mengionisasi fotosistem I, melepaskan elektron yang ditransfer sepanjang rantai transpor elektron yang akhirnya mereduksi NADP menjadi NADPH.
Reaksi gelap
ATP dan NADPH yang dihasilkan dalam proses fotosintesis memicu berbagai proses biokimia. Pada tumbuhan proses biokimia yang terpicu adalah siklus Calvin yang mengikat karbon dioksida untuk membentuk ribulosa (dan kemudian menjadi gula seperti glukosa). Reaksi ini disebut reaksi gelap karena tidak bergantung pada ada tidaknya cahaya sehingga dapat terjadi meskipun dalam keadaan gelap (tanpa cahaya).

Faktor yang menentukan kecepatan fotosintesis
Beberapa faktor yang menentukan kecepatan fotosintesis:

  1. Cahaya
    Komponen-komponen cahaya yang mempengaruhi kecepatan laju fotosintesis adalah intensitas, kualitas dan lama penyinaran. Intensitas adalah banyaknya cahaya matahari yang diterima sedangkan kualitas adalah panjang gelombang cahaya yang efektif untuk terjadinya fotosintesis.
  2. Konsentrasi karbondioksida
    Semakin banyak karbondioksida di udara, makin banyak jumlah bahan yang dapat digunakan tumbuhan untuk melangsungkan fotosintesis.
  3. Suhu
    Enzim-enzim yang bekerja dalam proses fotosintesis hanya dapat bekerja pada suhu optimalnya. Umumnya laju fotosintensis meningkat seiring dengan meningkatnya suhu hingga batas toleransi enzim.
  4. Kadar air
    Kekurangan air atau kekeringan menyebabkan stomata menutup, menghambat penyerapan karbon dioksida sehingga mengurangi laju fotosintesis.
  5. Kadar fotosintat (hasil fotosintesis)
    Jika kadar fotosintat seperti karbohidrat berkurang, laju fotosintesis akan naik. Bila kadar fotosintat bertambah atau bahkan sampai jenuh, laju fotosintesis akan berkurang.
  6. Tahap pertumbuhan
    Penelitian menunjukkan bahwa laju fotosintesis jauh lebih tinggi pada tumbuhan yang sedang berkecambah ketimbang tumbuhan dewasa. Hal ini mungkin dikarenakan tumbuhan berkecambah memerlukan lebih banyak energi dan makanan untuk tumbuh.

Penemuan tentang fotosintesis

Meskipun masih ada langkah-langkah dalam fotosintesis yang belum dipahami, persamaan umum fotosintesis telah diketahui sejak tahun 1800-an. Pada awal tahun 1600-an, seorang dokter dan ahli kimia, Jan van Helmont, seorang Flandria (sekarang bagian dari Belgia), melakukan percobaan untuk mengetahui faktor apa yang menyebabkan massa tumbuhan bertambah dari waktu ke waktu. Dari penelitiannya, Helmont menyimpulkan bahwa massa tumbuhan bertambah hanya karena pemberian air. Tapi pada tahun 1720, ahli botani Inggris, Stephen Hales berhipotesis bahwa pasti ada faktor lain selain air yang berperan. Ia berpendapat faktor itu adalah udara. Joseph Priestley, seorang ahli kimia dan pendeta, menemukan bahwa ketika ia menutup sebuah lilin menyala dengan sebuah toples terbalik, nyalanya akan mati sebelum lilinnya habis terbakar. Ia kemudian menemukan bila ia meletakkan tikus dalam toples terbalik bersama lilin, tikus itu akan mati lemas. Dari kedua percobaan itu, Priestley menyimpulkan bahwa nyala lilin telah "merusak" udara dalam toples itu dan menyebabkan matinya tikus. Ia kemudian menunjukkan bahwa udara yang telah “dirusak” oleh lilin tersebut dapat “dipulihkan” oleh tumbuhan. Ia juga menunjukkan bahwa tikus dapat tetap hidup dalam toples tertutup asalkan di dalamnya juga terdapat tumbuhan. Pada tahun 1778, Jan Ingenhousz, dokter kerajaan Austria, mengulangi eksperimen Priestley. Ia menemukan bahwa cahaya matahari berpengaruh pada tumbuhan sehingga dapat "memulihkan" udara yang "rusak". Akhirnya di tahun 1796, Jean Senebier, seorang pastor Perancis, menunjukkan bahwa udara yang “dipulihkan” dan “merusak” itu adalah karbon dioksida yang diserap oleh tumbuhan dalam fotosintesis. Tidak lama kemudian, Theodore de Saussure berhasil menunjukkan hubungan antara hipotesis Stephen Hale dengan percobaan-percobaan "pemulihan" udara. Ia menemukan bahwa peningkatan massa tumbuhan bukan hanya karena penyerapan karbon dioksida, tetapi juga oleh pemberian air. Melalui serangkaian eksperimen inilah akhirnya para ahli berhasil menggambarkan persamaan umum dari fotosintesis yang menghasilkan makanan (seperti glukosa).

 

 

 

 

 

Carbon dioxide enters a leaf from the air. The epidermis (outer surface) of the leaf has many tiny pores. These openings, called stomata, enable carbon dioxide to enter the leaf. Each pore is surrounded by two curved, bean-shaped guard cells that can swell and relax. When they swell, the pore is opened wide, and carbon dioxide enters the leaf. When the guard cells relax, the pore closes. In most plants, the stomata open during the day and close at night. A leaf has many stomata. For example, a cottonwood leaf may have 1 million stomata, and a sunflower leaf nearly 2 million. However, the pores are so small that they make up less than 1 percent of the leaf's surface. In most plants that grow in full sun, the majority of the stomata are in the shaded lower epidermis of the leaves. In many other plants, the stomata are about equally divided between the upper and lower epidermis. Water. A leaf obtains water that has been absorbed by the plant's roots. This water travels up the stem and enters the leaf through the petiole. Tiny tubes in the leaf's veins carry the water throughout the blade. These tubes make up the vein's xylem (water-transporting tissue). The inside of the blade is very humid. The epidermis is covered by a waxy coating called the cuticle, which helps keep the leaf from drying out. Nevertheless, a leaf does lose much water. Most of it escapes as vapor through the stomata by the process of transpiration. Light. Leaves cannot make food without light. But most leaves work best when the sunlight is at a certain level of brightness. If the light is too dim, the leaf will not make enough food. But if the light is too bright, it can damage the food-making cells. The leaves of many plants that grow in bright sunlight have an extremely thick cuticle, which helps filter out strong light and guards against excess water loss. The leaves may also have many threadlike structures called hairs growing out of the epidermis. These structures are not true hairs, which grow only on mammals, but they resemble hairs. Epidermal hairs further reduce the intensity of bright light. Such plants as geraniums and white poplar trees have so many epidermal hairs that they feel fuzzy. Some plants, including the herbs, ferns, and shrubs of the forest floor, thrive in shade. The leaves of most of these plants have a thin cuticle and few epidermal hairs. These features allow as much of the dim light as possible to enter the leaves. Photosynthesis occurs inside the leaf blade in two kinds of food-making tissues-palisade tissue and spongy tissue. The tall, slender cells of the palisade tissue are the chief food producers. They form one to three layers beneath the upper epidermis. The broad, irregularly shaped cells of the spongy tissue lie between the palisade tissue and the lower epidermis. Floating within both kinds of cells are numerous small green bodies known as chloroplasts. Each chloroplast contains many molecules of the green pigment chlorophyll.Partly surrounding each cell of the palisade and spongy tissue is an air space filled with carbon dioxide, water vapor, and other gases. The cells absorb carbon dioxide from this air space. When light strikes the chloroplasts, photosynthesis begins. The chlorophyll absorbs energy from the light. This energy splits the water molecules into molecules of hydrogen and oxygen. The hydrogen then combines with carbon dioxide to produce a simple sugar. This process is extremely complicated and involves many steps. The oxygen that is left over from the splitting of the water molecules enters the air through the stomata. The sugar produced by photosynthesis is carried in special tubelike cells that make up the vein's phloem (food-transporting tissue). The sugar moves through the petiole to the stem and all other parts of the plant. In the plant cells, the sugar may be burned and thus release energy for growth or other activities. Or the sugar may be chemically altered and form fats and starches. In addition, the sugar may be combined with various minerals, and so produce proteins, vitamins, and other vital substances. The minerals enter the plant dissolved in the water absorbed by the roots. Transpiration occurs as the sun warms the water inside the blade. The warming changes much of the water into water vapor. This gas can then escape through the stomata. Transpiration helps cool the inside of the leaf because the escaping vapor has absorbed heat.



Kaktus melakukan fotosintesis pada organ 100
Cached
Kaktus melakukan fotosintesis pada organ 1
Uraian Proses Fotosintesis pada Tumbuhan Hijau - Kelas IPA
Kaktus melakukan fotosintesis pada organ 75
Jaringan Tumbuhan : Pengertian, Struktur, Lapisan, Jenis
Kaktus melakukan fotosintesis pada organ 39
Bagaimanakah Tumbuhan Kaktus Melakukan Fotosintesis
Kaktus melakukan fotosintesis pada organ 98
PRAKTIKUM BIOLOGI : JARINGAN ORGAN TANAMAN
Kaktus melakukan fotosintesis pada organ 22
12 Plataformas para Crear un Blog gratis - Jos Facchin
Kaktus melakukan fotosintesis pada organ 34
Kaktus melakukan fotosintesis pada organ 30
Kaktus melakukan fotosintesis pada organ 26
Kaktus melakukan fotosintesis pada organ 15
Kaktus melakukan fotosintesis pada organ 8
Kaktus melakukan fotosintesis pada organ 63
Kaktus melakukan fotosintesis pada organ 70
Kaktus melakukan fotosintesis pada organ 83
Kaktus melakukan fotosintesis pada organ 69
Kaktus melakukan fotosintesis pada organ 70